

VOC – Analysis on arium® pro VF

Sample	Detection threshold	Determined concentration	Unit	Procedure
1,1,1,2-Tetrachlorethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,1,1-Trichlorethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
1,1,2,2-Tetrachlorethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
1,1,2-Trichlorethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,1-Dichlorethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,1-Dichlorethene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,1-Dichloropropene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2,3-Trichlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2,3-Trichloropropane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2,4-Trichlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2,4-Trimethylbenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2-Dibromo-3-chloropropane (DBCP)	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2-Dibromoethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2-Dichlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2-Dichlorethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,2-Dichloropropane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,3,5-Trimethylbenzene	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
1,3-Dichlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
1,3-Dichloropropane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
1,4-Dichlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
2,2-Dichloropropane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
2-Chlorotoluene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
4-Chlorotoluene	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
4-Isopropyltoluene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Benzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Bromobenzene	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Bromochloromethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Bromodichloromethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Bromomethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Bromoform	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Chlorobenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Chloroethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS

Method and Analytical Procedure

The ultrapure water analysis was performed by ProChem at the product water dispensing site of the arium® pro VF, including sterile final filter. ProChem is an independent service provider and performs analyses in the field of trace analytics. The following procedures were used for the analysis: Headspace GC/MS coupling. In order to achieve the lowest possible detection limit, the method was optimized in terms of its measuring conditions. The measurement parameters were configured optimally as a function of substance group. The calibration was performed with external standards; variations in the transition into the steam exposure space phase during the headspace process were compensated by adding and performing a concurrent measurement with d8-toluene as the internal standard.

Sample	Detection threshold	Determined concentration	Unit	Procedure
Chloroform	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
cis-1,2-Dichloroethene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
cis-1,3-Dichloropropene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Dibromochloromethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Dibromomethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Dichloromethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Ethylbenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Hexachlorobutadiene	0.005	< 0.005	μg/l (ppb)	HS-GC/MS
Isopropylbenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
m-Xylene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Naphthaline	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
n-Butylbenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
n-Propylbenzene	0.5	< 0.5	μg/l (ppb)	HS-GC/MS
o-Xylene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
p-Xylene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
sec-Butylbenzene	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Styrene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
tert-Butylbenzene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Tetrachloroethene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Tetrachloromethane	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Toluene	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
trans-1,2-Dichloroethene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
trans-1,3-Dichloropropene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Trichloroethene	0.05	< 0.05	μg/l (ppb)	HS-GC/MS
Trichlorofluoromethane	0.1	< 0.1	μg/l (ppb)	HS-GC/MS
Vinyl chloride	0.2	< 0.2	μg/l (ppb)	HS-GC/MS

Method and Analytical Procedure

The ultrapure water analysis was performed by ProChem at the product water dispensing site of the arium® pro VF, including sterile final filter. ProChem is an independent service provider and performs analyses in the field of trace analytics. The following procedures were used for the analysis: Headspace GC/MS coupling. In order to achieve the lowest possible detection limit, the method was optimized in terms of its measuring conditions. The measurement parameters were configured optimally as a function of substance group. The calibration was performed with external standards; variations in the transition into the steam exposure space phase during the headspace process were compensated by adding and performing a concurrent measurement with d8-toluene as the internal standard.

Sartorius Lab Instruments GmbH & Co. KG Weender Landstrasse 94–108 37075 Goettingen, Germany

Phone +49.551.308.0 Fax +49.551.308.3289

www.sartorius.com